Robust Scale Adaptive Tracking by Combining Correlation Filters with Sequential Monte Carlo

نویسندگان

  • Junkai Ma
  • Haibo Luo
  • Bin Hui
  • Zheng Chang
چکیده

A robust and efficient object tracking algorithm is required in a variety of computer vision applications. Although various modern trackers have impressive performance, some challenges such as occlusion and target scale variation are still intractable, especially in the complex scenarios. This paper proposes a robust scale adaptive tracking algorithm to predict target scale by a sequential Monte Carlo method and determine the target location by the correlation filter simultaneously. By analyzing the response map of the target region, the completeness of the target can be measured by the peak-to-sidelobe rate (PSR), i.e., the lower the PSR, the more likely the target is being occluded. A strict template update strategy is designed to accommodate the appearance change and avoid template corruption. If the occlusion occurs, a retained scheme is allowed and the tracker refrains from drifting away. Additionally, the feature integration is incorporated to guarantee the robustness of the proposed approach. The experimental results show that our method outperforms other state-of-the-art trackers in terms of both the distance precision and overlap precision on the publicly available TB-50 dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrating robust likelihoods with Monte-Carlo filters for multi-target tracking

In this paper, a dynamic multi-modal fusion scheme for tracking multiple targets with Monte-Carlo filters is presented, with the goal of achieving robustness by combining complimentary likelihoods based on color and foreground segmentation. The generality of the proposed approach allows defining the measurements on different levels (pixel-, featureand object-space) through dynamic data fusion. ...

متن کامل

Tempo Tracking Rhythm by Sequential Monte

We present a probabilistic generative model for timing deviations in expressive music. performance. The structure of the proposed model is equivalent to a switching state space model. We formulate two well known music recognition problems, namely tempo tracking and automatic transcription (rhythm quantization) as filtering and maximum a posteriori (MAP) state estimation tasks. The inferences ar...

متن کامل

Rao-Blackwellized Monte Carlo Data Association for Multiple Target Tracking

We propose a new Rao-Blackwellized sequential Monte Carlo method for tracking multiple targets in presence of clutter and false alarm measurements. The advantage of the new approach is that Rao-Blackwellization allows the estimation algorithm to be partitioned into single target tracking and data association sub-problems, where the single target tracking sub-problem can be solved by Kalman filt...

متن کامل

Multiple target tracking using Sequential Monte Carlo Methods and statistical data association

This paper presents two approaches for the problem of Multiple Target Tracking (MTT) and specifically people tracking. Both filters are based on Sequential Monte Carlo Methods (SMCM) and Joint Probability Data Association (JPDA). The filters have been implemented and tested on real data from a laser measurement system. Experiments show that both approaches are able to track multiple moving pers...

متن کامل

Monte Carlo Methods for Tempo Tracking and Rhythm Quantization

We present a probabilistic generative model for timing deviations in expressive music performance. The structure of the proposed model is equivalent to a switching state space model. The switch variables correspond to discrete note locations as in a musical score. The continuous hidden variables denote the tempo. We formulate two well known music recognition problems, namely tempo tracking and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017